Regulation of calcium slow channels of heart by cyclic nucleotides and effects of ischemia.

نویسنده

  • N Sperelakis
چکیده

The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in the number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite or antagonistic of that of cAMP. This has been demonstrated at both the macroscopic level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, for example, a regulatory protein (inhibitory type) associated with the Ca2+ channel. It has been demonstrated that introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. In addition, cGMP/PK-G act to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower, indirect pathway--exerted via cAMP/PK-A--there is a faster, more direct pathway for ICa(L) stimulation by the beta-adrenergic receptor. The latter pathway involves direct modulation of the channel activity by the alpha subunit (alpha S*) of the GS protein. PK-C and calmodulin-PK also may play roles in the regulation of the myocardial slow Ca2+ channels, possibly mediated by phosphorylation of some regulatory type of protein. Both protein kinases stimulate the activity of the slow Ca2+ channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell (Fig. 9). The cyclic nucleotides also have effects on the slow Ca2+ channels in cells other than cardiac muscle, including neurons, smooth muscle, and skeletal muscle fibers (Tables III and IV). In cardiac muscle, the two cyclic nucleotides have opposing effects, cAMP stimulating and cGMP inhibiting. In some smooth muscles (e.g., vascular), both cyclic nucleotides act in the same direction, namely, both inhibit ICa(L). In skeletal muscle, both cAMP and cGMP act in the same direction on ICa(L), but to stimulate.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYCLIC NUCLEOTIDES CONTROL DIFFERENTIATION OF HUMAN MONOCYTES INTO EITHER HIGHLY ACCESSORY CELLS OR MACROPHAGES

Human peripheral blood monocytes have been found to undergo a transitory state of high accessory activity before they fully become macrophages. Time kinetics were done to follow this accessory potential. Studying the regulation of accessory activity, we have found that monocyte derived accessory cells (m-AC) pass through two phases of development, both of which are adversely controlled by ...

متن کامل

cGMP inhibits the activity of single calcium channels in embryonic chick heart cells.

Effects of cGMP on the slow (L-type) Ca2+ channels of cultured chick embryonic cardiomyocytes were investigated by a cell-attached patch-clamp method. Superfusion of the single cells with 8-bromo-cGMP, a membrane-permeable derivative of cGMP, inhibited the single-channel activity. The cyclic nucleotide decreased, in a concentration-dependent manner, the ensemble averaged currents obtained from ...

متن کامل

cGMP Inhibits the Activit of Single Calcium Channels in Embryonic Chick Heart Cells

Effects of cGMP on the slow (L-type) Ca2' channels of cultured chick embryonic cardiomyocytes were investigated by a cell-attached patch-clamp method. Superfusion of the single cells with 8-bromo-cGMP, a membrane-permeable derivative of cGMP, inhibited the single-channel activity. The cyclic nucleotide decreased, in a concentration-dependent manner, the ensemble averaged currents obtained from ...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advances in pharmacology

دوره 31  شماره 

صفحات  -

تاریخ انتشار 1994